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ABSTRACT 
Human communication involves a number of nonverbal cues that 
are seemingly unintentional, unconscious, and automatic—both in 
their production and perception—and convey rich information on 
the emotional state and intentions of an individual. One family of 
such cues is called “nonverbal leakage.” In this paper, we explore 
whether people can read nonverbal leakage cues—particularly 
gaze cues—in humanlike robots and make inferences on robots’ 
intentions, and whether the physical design of the robot affects 
these inferences. We designed a gaze cue for Geminoid—a highly 
humanlike android—and Robovie—a robot with stylized, abstract 
humanlike features—that allowed the robots to “leak” information 
on what they might have in mind. In a controlled laboratory 
experiment, we asked participants to play a game of guessing with 
either of the robots and evaluated how the gaze cue affected 
participants’ task performance. We found that the gaze cue did, in 
fact, lead to better performance, from which we infer that the cue 
led to attributions of mental states and intentionality. Our results 
have implications for robot design, particularly for designing 
expression of intentionality, and for our understanding of how 
people respond to human social cues when they are enacted by 
robots.   

Categories and Subject Descriptors 
H.1.2 [Models and Principles]: User/Machine Systems – Human 
factors. H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – Evaluation/methodology, User-Centered Design. 

General Terms 
Design, Human Factors 

Keywords 
Nonverbal Behavior, Gaze, Nonverbal Leakage, Humanlikeness, 
Robovie, Geminoid  

1. INTRODUCTION 
In interpreting others’ feelings and intentions, we rely not only on 
explicit and deliberate communicative acts, but also on implicit, 
seemingly automatic, and unconscious nonverbal cues. When we 
see the trembling hands of a public speaker, we understand that the 
speaker is nervous. Similarly, when we suspect that someone might 
be lying, we look for cues in their nonverbal behavior that would 
reveal his or her emotional or intellectual state. These examples 
illustrate a set of behaviors called “nonverbal leakage” cues that are 

products of internal, cognitive processes and reveal to others 
information on the emotional state or intentions of an individual 
[19,58]. 
Research in human communication has shown that, using nonverbal 
cues, naïve observers can identify deception [18,19], dissembling 
[22], genuineness of smiles [52,57], friendliness and hostility [2], 
affective states [36,48,49,56], and disfluency of speech [17]. 
Furthermore, these behaviors might play an important role in 
forming impressions of others—a process in which people rely 
heavily on nonverbal behavior [1]. We argue that nonverbal leakage 
cues and, more broadly, seemingly unintentional and non-semantic 
nonverbal behaviors pose an important area of inquiry for human-
robot interaction. Furthermore, the communicative richness of these 
cues offers opportunities for designing richer and more natural 
behaviors for robots. 
While research in human-robot interaction has made significant 
progress in understanding the use of explicit, deliberate cues such as 
communication of primary emotions through facial expressions 
[5,8,10,29,40,47], arm and bodily gestures [53], and vocal tone [9] 
and communication of attention through gaze [11,27,33,41,50,54] 
and pointing gestures [28,51], how implicit, non-strategic, and non-
semantic cues might be used in human-robot communication has 
not been explored.  
Do people detect nonverbal leakages in robots? If so, do they 
interpret these messages correctly to attribute intentions to the 
robot? How do the physical characteristics of the robot affect these 
inferences? In this paper, we attempt to answer these questions 
focusing on gaze cues, which are found to be a particularly salient 
set of nonverbal cues in the communication of complex mental 
states and intentionality [4,21,24]. Our study follows a process of 
gaining a better understanding of the concept of leakage from 
theory on nonverbal communication and observations of human 
behavior, designing behavioral cues for humanlike robots (as, in this 
study, those shown in Figure 1), contextualizing these behaviors in 
human-robot interaction scenarios, and evaluating whether these 
cues communicate intentions and states of mind by testing 
theoretically based hypotheses in an empirical study. In the 

 
Figure 1. The humanlike robots we used in our study, Robovie  
R-2 (left) and Geminoid (right). 
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remainder of this paper we summarize related work on non-
semantic cues, nonverbal leakage, and gaze cueing, describe our 
methodology, present our results, and discuss implications of our 
findings for human-robot interaction research. 

2. RELATED WORK 
In this section, we summarize related work on nonverbal leakage 
and focus particularly on how people interpret gaze cues and 
attribute mental states and intentions to others. Next, we provide a 
brief summary of existing research on nonverbal leakage in human-
robot interaction and embodied virtual agents. We also provide 
background on how the humanlikeness of a robot might affect 
perceptions of its nonverbal cues. 
Nonverbal Leakage Cues 
Imagine two friends, Akira and Mai playing the popular guessing 
game “two truths and a lie.” Akira will tell three facts about himself, 
of which two are true and one is a lie, and Mai will try to guess 
which one of the facts is a lie. In guessing Akira’s lie, Mai will 
primarily rely on her knowledge of Akira’s background, her world 
experience, and skills such as empathy. However, she will also look 
for signs of apprehension, guilt, or excitement in Akira’s nonverbal 
and vocal behavior, and in the presence of such signs, use them to 
infer which one of Akira’s facts is a lie. In this scenario, the signs 
that Mai is looking for are behaviors that Akira will unintentionally 
produce due to heightened arousal, his own feelings such as guilt, 
attempts to control his behaviors and feelings, and/or the cognitive 
complexity required to manufacture the lie [12,18,58]. Mai, on the 
other hand, will show an automatic and unconscious propensity to 
search for and respond to these signals [52,57].  
The scenario above illustrates a common process in interpersonal 
communication in which people use unintentionally produced, non-
strategic, and non-semantic nonverbal cues to infer the intentions or 
the emotional and intellectual states of communication partners. A 
particular type of such processes is “nonverbal leakage”—as termed 
by Ekman and Freisen [19]—in which feelings or thoughts “leak” 
through the nonverbal channel to reveal the internal state of an 
individual. Research in this area has found that a number of 
intentional and affective states can be identified simply through 
observations of leakage cues. For instance, cues from the face, arms, 
and legs were found to reveal deception and self-deception [19].  
Research has also shown that people automatically search for cues 
that might leak information in others’ nonverbal behaviors. For 
instance, studies of smiling showed that people automatically fixate 
and read cues from the region of the eyes, particularly the “crow’s 
feet” area [57], to distinguish genuine smiles—called the 
“Duchenne Smile” [20]—from smiles of appeasement [52]. 
Furthermore, identifying these cues and interpreting their meanings 
can be done by naïve observers with no particular expertise. For 
instance, clinical psychological research has shown that using 
nonverbal leakage cues alone—particularly those from the hands, 
eyes, mouth, and torso—naïve observers are able to identify the 
presence and discriminate among varying intensities of anxiety [56]. 
Similarly, Feldman and his colleagues [22] showed that naïve 
observers could distinguish genuine or dissembled praise based on 
the amount of smiling, instances of pauses in speech, and mouth 
expressions of the person providing the praise. Chawla and Krauss 
[17] found that naïve observers were able to distinguish rehearsed 
speech from spontaneous speech with reliably higher accuracy than 
chance using only nonverbal cues. Finally, naïve participants who 
were asked to review videotapes of a performer reading friendly, 
neutral, and hostile messages in a friendly, neutral, and hostile 
nonverbal style were found to rely on nonverbal cues significantly 
more than the verbal content in their ratings of the messages [2]. 

Gaze Cues as a Channel of Nonverbal Leakage 
Gaze cues are a particularly important set of leakage cues that 
provide a wealth of information on the mental states and intentions 
of an individual [4,7,21,23,24,25,35,37,45]. Social and 
developmental psychological studies have shown that through 
observing others’ gaze patterns, people infer personality traits 
[35]—particularly trustworthiness [6]—and detect and infer 
deception [4,25,37,38]. For instance, Freire and his colleagues [23] 
showed that children as young as four years old could locate a 
hidden object, using only gaze cues of a performer, despite that they 
were given verbal information that contradicts the information from 
the gaze cues. 

Neurophysiological research further explains human sensitivity to 
gaze cues and the automatic propensity to attribute mental states and 
intentions based on information from these cues [4,7,21,45]. Emery 
[21] suggests that people combine information from gaze cues with 
“higher-order cognitive strategies (including experience and 
empathy) to determine that an individual is attending to a particular 
stimulus because they intend to do something with the object, or 
believe something about the object”—an ability called “mental state 
attribution” or “theory of mind.” Baron-Cohen [4] proposed that the 
ability to use gaze information to attribute mental states is supported 
by the interaction between dedicated brain mechanisms such as an 
“eye-direction detector” and “intentionality detector.” Later studies 
provided support for his proposal by showing that perception of 
gaze direction activates the same areas of the brain that are involved 
in making attributions of intention and beliefs [13,14]. Similarly, 
research has also found behavioral evidence that people’s motor 
intentions can be inferred by monitoring their gaze direction 
[15,46]. 

Leakage Cues in Human-Robot Interaction  
Research in human-robot interaction has focused mainly on creating 
explicit expressions of emotional states and intentions [5,8,9,11,27-
29,33,40,41,47,50,51,54] and has not looked at whether these states 
and intentions could be communicated through implicit, seemingly 
unintentional cues with the exception of a single study on virtual 
agents. Bailenson and his colleagues [3] asked participants to 
interact with an agent that mimicked participants’ nonverbal 
behavior—a common unconscious behavior seen in human 
communication called the “chameleon effect” [16]—and to rate 
whether they thought that the agent was a human or a computer (as 
in a “Turing Test”). They found that participants (failingly) rated the 
agent as human more when the agent mimicked their nonverbal 
behavior than when it did not do so, suggesting that seemingly 
unintentional cues affect people’s social judgments of virtual 
agents. 

Humanlikeness and Perceptions of Behavioral Cues 
The physical and behavioral characteristics of a robot, particularly 
its humanlikeness, might affect how people read and interpret 
nonverbal cues in robots. Research in virtual agents has shown that 
the humanlikeness of an agent affects people’s social judgments of 
the agent [42,43]. People reliably rate agents with highly humanlike 
features to be more socially attractive, more satisfactory as partners 
[42], more co-present [43], and more likeable [44] than agents with 
less humanlikeness and cooperate more with them [44]. Research in 
human-robot interaction has shown similar attributions to robots 
[26,30,34]. Hinds and her colleagues [26] showed that people took 
less personal responsibility in a task in which they collaborated with 
a humanlike robot than in a task in which they collaborated with a 
machinelike robot, suggesting that people might associate 
humanlikeness with more competence. Goetz and her colleagues 
[30] found that people expected the physical and behavioral 



 

 

characteristics of a robot to match its task and complied more with 
instructions given by a robot that met their expectations of 
appropriateness. This expectation of appropriateness in a robot’s 
appearance and behavior suggests that people might expect and 
correctly interpret leakage cues when they are enacted by robots 
with the appropriate level of humanlikeness. In support of this 
hypothesis, Kiesler and Goetz [34] argued that humanlike 
characteristics might engender a more human mental model of a 
robot. In the next section, we describe the methodology of our 
investigation. 

3. METHODOLOGY 
To gain a better understanding of how gaze cues might serve to 
communicate mental states and intentions, we choreographed a 
dyadic game task and observed whether human players “leaked” 
information through their gaze behavior and, if so, how. We used 
the findings from our observation to design gaze cues for two 
robots: Geminoid and Robovie R-2 (see Figure 1). In a controlled 
experiment, we asked naïve participants to play the game with 
either one of the two robots and measured how the gaze cue 
affected participants’ performance in the game. In the following 
paragraphs, we describe our interaction design of the game task , 
findings from observations of human players, design of the gaze 
cues for the robots, and evaluation of the designed gaze cues, 
including experimental design, hypotheses, study procedure, 
measurements, and participant profile. 

3.1 Interaction Design of the Experiment 
We devised an experimental task in which a dyad—either two 
participants or a participant and a robot—played a game of 
guessing. In the game, one of the players, the “picker,” chose an 
item—without identifying it to the other player—among fourteen 
items placed on a table located between the two players (see Figure 
2). The other player, the “guesser,” tried to guess which item the 
picker chose by asking the picker a set of questions that  can be 
answered with “Yes” and “No.” We carefully chose the items on the 
table from artifacts that are commonly used in Japanese daily life 
and that represent a balanced set of colors, shapes, materials, and 
sizes. We placed the items on the table equadistantly and 
determined their spread so that the players did not have to move 
their heads to glance at the items.  
We provided participants with detailed instructions and strategies on 
how to play the game. They were told that the best way to play the 
game was to ask questions that would help them narrow down the 
number of alternatives. For instance, if they asked whether the item 
has the color red and the picker said, “Yes,” this would reduce 
alternatives from fourteen to four. If the picker said, “No,” the 
number of alternatives would still be reduced to ten. We empirically 

determined the number of items on the table to be fourteen in order 
to allow participants to identify the item with an expected average 
of five questions. 
Observations of Leakage Cues in Human-Human Interaction 
To understand whether, and if so, how, human pickers would leak 
information on their choice of items, we hired two all-male dyads 
and asked members of the dyads to play the game. Each participant 
played the roles of picker and guesser. We captured pickers’ gaze 
behavior using high-definition cameras and conducted a frame-by-
frame analysis of the video sequences. The most significant finding 
of our analysis was that pickers often looked towards their pick 
immediately before answering questions in very short glances, 
verifying that they know the answer to the question while trying to 
conceal the behavior. The top row in Figure 3 shows image 
sequences of one of these glances. 
The Design of the Leakage Cue for the Robots 
We used the main finding of our analysis directly to design gaze 
cues for the robots. In our design, the robots produced two 400-
millisecond glances at the object that it picked immediately before 
answering two of the first three questions that the participant 
directed at the robot. Image sequences of both robots’ enactments of 
the gaze cue are shown in the middle and bottom rows of Figure 3. 
The glances at the objects took a total of 1200 milliseconds 
including travel time of the eyes to and from the gaze target. We 
determined the gaze duration and timing optimizing for the motor 
capabilities of the two robots for smooth and natural motion while 
considering the range of the lengths of glances that we found  in our 
analysis of the data from human participants. 
In interacting with the participants, the robots followed common 
interaction rituals [31]. They introduced themselves to the 
participants, provided them with information on the task, 
maintained fluency in the interaction using phrases such as “Let’s 
play one more time,” and ended the interaction appropriately by 
thanking the participant for playing the game. We used pre-recorded 
human voice to create a rich library of utterances for the robots. 
Each expression was recorded several times in different forms and 
inflections. In producing these expressions, the robots randomly 
chose from a set of alternatives. In performing the task, the robots 
did not use speech recognition. Instead, a human operator initiated 
the robots’ speech by selecting expressions from a library. 
The behaviors of the two robots were designed to be identical and 
follow the same pre-scripted routine and adaptive dialog, except for 
differences required by the physical design of the robot. In 
designing Geminoid’s gaze behavior, we added random eye blinks 

 
Figure 3. Image sequences of the leakage gaze cue from our 
observation of human players (top row) and of our design of the 
cue for Robovie (middle row) and Geminoid (bottom row). 

 

 
Figure 2. The spatial configuration of the game task. 

 



 

 

at an average interval of five seconds. We also produced lip 
movements synchronized with the robot’s speech by capturing   our 
voice actor’s lip movements using a five-camera motion-capture 
system. Finally, we differentiated Geminoid’s voice in pitch from 
Robovie’s to match the appearance of the robot, creating a low-
pitch male voice for Geminoid and a high-pitch metallic voice for 
Robovie. We used post-processing to differentiate the voices in 
order to maintain the same length and inflections for each 
expression between the two robots. 

3.2 Experimental Design 
We conducted a two-by-two (two robots and “gaze cue” vs. “no 
gaze cue” conditions), mixed-factorial-design experiment in which 
participants played the game with either one of the two robots in 
eight trials with an additional practice trial at the beginning of the 
experiment. In all of these trials, the robots played the role of the 
picker and participants played the role of the guesser. In half of 
these trials (excluding the practice trial), the robot produced the 
gaze cue, glancing at its pick (as illustrated in the middle and 
bottom rows of Figure 3). We delayed the robot’s answers before 
which it did not produce the gaze cue with the duration of the 
glance to keep the time it took the robot to answer questions 
consistent across trials and conditions. In summary, the two gaze 
conditions were as follows: 
In condition 1, after the question, the robots waited (the same 
amount of time that a glance took), looked up, establishing eye 
contact, and answered the participant’s question. 
In condition 2, after the question, the robots glanced at the object, 
looked up, establishing eye contact, and answered the participant’s 
question. 
Except the two short glances, the robot’s behaviors were identical 
across trials. Each participant played the game four times in each 
condition with either one of the two robots. We randomly assigned 
participants to play the game with either of the robots. We 
counterbalanced the order in which (1) the robot chose items and (2) 
the gaze manipulation appeared. 

3.3 Hypotheses 
Drawing from existing theory on nonverbal communication, we 
developed two main hypotheses on how the gaze cue would affect 
people's task performance and how the interpretation of the cue 
would differ between interactions with Robovie and Geminoid.   
Hypothesis 1. – Participants will identify the item that the robots 
choose faster—using a smaller number of questions and spending 
less time—when the robots produce gaze cues than when they do 
not do so. 
Hypothesis 2. – The leakage cue will be correctly interpreted with 
Geminoid but not with Robovie, as Geminoid’s near-human 
features will facilitate the perception of the cue as a social signal 
and Robovie’s stylized design will not do so. Therefore, we expect 
the gaze cue to significantly affect task performance with Geminoid 
and not with Robovie. 

3.4 Experiment Procedure 
We first provided participants with a brief description of the 
purpose and procedure of the experiment. We told them that 
researchers at ATR have been designing robots that can play games 
with people and would like their help in testing their designs. We 
deliberately concealed the primary purpose of our experiment—
participants were not given any information on the robots’ behavior. 
After the introduction, participants reviewed and signed a consent 
form and filled in a pre-experiment questionnaire on their affective 
state. We then  provided them with more detail on the experimental 
task; the experimenter asked them to read a written description of 

the game and provided further detail on the task verbally. We then 
took  participants into the experiment room to play the game with  
either Robovie or Geminoid. After playing a practice round, 
participants played eight rounds of the game. At the end of the 
game, we took were them out of the experiment room and asked 
them to fill in a post-experiment questionnaire that measured their 
affective state, personality, experience with and perceptions of the 
robot, perceptions of the task, and demographic information. 
Finally, the experimenter interviewed all participants regarding their 
experience. 
The game task and the total experiment procedure took 
approximately 15 minutes and 45 minutes respectively. We 
conducted the experiment in a dedicated room with no outside 
distraction. The experimenter left participants in the room alone 
with the robots and observed the interaction remotely through live 
video feeds provided by two cameras. All subjects were paid 1,500 
¥ (roughly $14 or €9) for their participation including their travel 
expenses. 

3.5 Measurement 
Our experimental design involved two manipulated independent 
variables, (1) whether or not the robot produced the gaze cue 
(manipulated as within-participants), and (2) whether they played 
the  game with Robovie or Geminoid (manipulated as between-
participants). The dependent variables involved objective and 
subjective measurements. 
Objective – We measured participants’ task performance through 
capturing the time it took participants and the number of questions 
they asked to identify the robot’s picks. All sessions were 
videotaped to support the analysis of the objective measures. 
Subjective – Subjective measures evaluated participants’ affective 
state using the PANAS scale [55], perceptions of the robot’s 
physical, social, and intellectual characteristics using a scale 
developed for evaluating humanlike agents [44] and attributions of 
mind and intentionality to the robot, perceptions of the task (e.g. 
how much they enjoyed and attended to the task), personality using 
scales of intellectual competence, creativity, distrust, and empathy 
[32], and demographic information. We measured participants’ 
affective state before and after participants interacted with the robot 
and all other measurements after the experiment..We used seven-
point Likert scales in all questionnaire items. We did the 
manipulation check using open-ended questions in the post-
experiment questionnaire that explicitly asked participants to list the 
kinds of cues that they observed in the robots’ behavior that they 
used in identifying the robots’ picks. We also conducted semi-
structured interviews at the end of the experiment to gain a richer 
understanding of participants’ experiences with and perceptions of 
the robots. 

3.6 Participation 
A total of 26 participants (17 males and 9 females) participated in 
the experiment. All subjects were native-Japanese-speaking 
university students recruited from the Osaka area. The ages of the 
subjects varied between 18 and 24 (M=20.4, SD=1.50). Subjects 
were chosen to represent a variety of university majors. Of all the 
subjects, 11 studied engineering, 9 studied social sciences & 
humanities, 3 studied engineering, 2 studied natural sciences, and 
one participant did not report university major. The computer use 
among participants was very high (M=6.50, SD=0.65) on a scale 
from one to seven. Their familiarity with robots was relatively low 
(M=2.81, SD=1.55), so was their video gaming experience (M=30, 
SD=1.92) and online shopping experience (M=3.00, SD=1.52) on 
the same scale. One participant had a toy robot and 13 owned pets 
(8 dogs, 4 cats, and one ferret). Figure 4 shows participants playing 
the game with Robovie and Geminoid. 



 

 

4. RESULTS 
We analyzed objective measures using a mixed-effects analysis of 
variance (ANOVA). We included in the model participant and trial 
IDs as random effects and measured and manipulated independent 
variables (participant gender, pet ownership, and the robot with 
which participants interacted) as fixed effects. We analyzed 
subjective measures using a fixed-effects analysis of variance. We 
did the manipulation check using a contingency analysis. We also 
conducted correlation analyses to understand how subjective and 
objective measures correlated with each other. 
Objective Measures – We used two main objective measures: the 
number of questions participants asked and the time it took them to 
identify the robot’s picks. The number of questions provides us with 
an abstract measure of performance that indirectly quantifies the 
cognitive activity required to complete the task. However, the time 
required to identify the item might be a more accurate measure of 
participants' performance, because our observations during the two 
pretests that we conducted showed that even when participants had 
some idea which item the robot had in mind (inferred from their 
nonverbal behavior), they asked further questions to eliminate less 
possible alternatives, but did so without spending much time for 
cognitive processing. The task performance data included 208 trials. 
Two of these trials were excluded due to operator error. We also 
carefully studied the distributions and excluded 2 and 13 outliers 
that lied above 1.5 interquartile ranges (1.5⋅IQR) beyond the third 
quartile (Q3) in the number of questions participants asked and the 

time it took participants to identify the item respectively. The 
resulting performance data included 200 and 193 trials for the 
former and latter performance measures respectively.  
Our first hypothesis predicted that participants would perform 
significantly better in identifying the item when the robots produced 
the gaze cue than when they did not. Analyses of variance of both 
performance measures supported this hypothesis. Participants asked 
significantly fewer questions (F[1,164]=4.30, p=0.04) and took 
significantly less time (F[1,150]=5.49, p=0.02) to identify the 
robots’ picks when the robots produced the gaze cue than when they 
did not do so (Figures 5.a and 5.b).  
Our second hypothesis predicted that the gaze cue would affect 
participant performance with Geminoid but not with Robovie. Our 
analysis of the second performance measure provided support for 
this hypothesis. Participants identified the item significantly faster 
in the presence of the gaze cue when they played the game with 
Geminoid (F[1,149]=3.93, p=0.05), but their performance was not 
significantly affected by the gaze cue when they played the game 
with Robovie (F[1,151]=1.75, p=ns), as shown in Figure 5.c. On the 
other hand, a contingency analysis for the manipulation check 
(whether or not participants reported identifying the gaze cue and 
using this information to correctly guess the robots’ picks) showed 
that significantly fewer participants reported identifying the gaze 
cue in Geminoid’s behavior than in Robovie’s (χ2(1,26)=7.54, 
p<.01), as shown in Figure 5.d.  Furthermore, our analysis showed 
that those who reported identifying the gaze cue did not differ in 
performance from those who did not report identifying the gaze cue 
(F(1,22)=1.68, p=ns). These findings are further supported by our 
qualitative data; several participants reported in the semi-structured 
interviews that they identified Robovie’s gaze cues but did not 
attribute intentionality to the cue, which might explain why the gaze 
cue did not significantly affect their performance with Robovie. 
This explanation is further considered in the Discussion section. 
Our analysis also showed that participants generally identified the 
item significantly faster with Robovie than with Geminoid 
(F[1,23]=8.11, p<0.01) as shown in Figure 5.c. This effect was 
present both when the robots produced the gaze cue (F[1,46]=4.36, 
p=0.04) and when they did not (F[1,46]=7.06, p=0.01). We discuss 
alternative explanations of this result in the Discussion section. 
Our analysis found no effect of gender on how the gaze cue affected 
participants’ performance but found a significant interaction 
between pet ownership and how the gaze cue affected the it took 
participants to identify the robots‘ picks (F[1,174]=5.53, p=0.02). 
Those who owned pets identified the  robots’ picks using 
significantly fewer questions (F[1,173]=9.46, p<0.01) and in a 

 
Figure 4. Participants in the experiment interacting with Robovie 
(top) and with Geminoid (bottom). 

 

 
Figure 5. Results on objective measures: (a) Number of questions that participants asked to identify the item with and without gaze cue, (b) the time 
it took participants to identify the item with and without gaze cue, (c) the time it took participants to identify the item with and without the gaze cue 
for the two robots, (d) whether or not participants reported identifying the gaze cue for the two robots, and (e) the time it took pet owners and others 
to identify the item with and without gaze cues. Lower ratings represent better task performance. (*) denotes statistically significant probabilities. 

 

 



 

 

significantly shorter time (F[1,158]=8.84, p<0.01) when the robots 
produced the gaze cue than when they did not do so (Figure 5.e). 
Those who did not own pets showed no differences in the number 
of questions that they asked (F[1,172]=0.06, p=ns) and the time it 
took them (F[1,160]=0.21, p=ns) to identify the robots’ picks with 
the presence of the gaze cue. 
Subjective Measures – We started our analysis of subjective 
measures with a factor analysis of 30 questionnaire items that we 
used to evaluate social and intellectual characteristics of the robots. 
The analysis produced eight factors from which we created two 
reliable measures: a six-item scale of social desirability (Cronbach's 
α=0.84) and an eight-item scale of intelligence and attribution of 
mind (Cronbach’s α=0.76). 
An analysis of variance showed that participants rated Robovie as 
more socially desirable than they rated Geminoid (F[1,20]=12.49, 
p<0.01). We also found a significant interaction effect between 
participant gender and robot (F[1,20]=7.79, p=0.01). Women rated 
Robovie as significantly more socially desirable than they rated 
Geminoid (F[1,20]=14.95, p<0.01), while no differences were 
found in men’s ratings of the social desirability of the two robots 
(F[1,20]=0.29, p=ns). The analysis also produced a marginal 
interaction effect between pet ownership and robot on participants’ 
ratings of the social desirability of the robots (F[1,20]=3.21, 
p=0.09). Those who did not own pets rated Robovie as more 
socially desirable than they rated Geminoid (F[1,20]=15.30, 
p<0.01) while pet owners did not differ in their evaluations of the 
two robots (F[1,20]=1.46, p=ns). 
No differences in participants’ ratings of the two robots’ intelligence 
and their attributions of mind to the robots were observed 
(F[1,20]=1.91, p=ns). This result is consistent with the qualitative 
data obtained through interviews as participants mainly associated 
intelligence with the robots’ behavior—that the robots could answer 
all of their questions in the game—and not with their physical 
design. 
Some of the factors in our factor analysis were loaded on single 
items. Therefore, we also analyzed single items using analyses of 
variance. No differences were observed in how much participants 
liked the robot (F[1,20]=0.52, p=ns) or how much they thought that 
the robot liked them (F[1,20]=1.24, p=ns). However, both measures 
were affected by whether participants owned pets. We found a 
marginal interaction between pet ownership and which robot 
participants interacted with in how much they liked the robots 
(F[1,20]=3.16, p=0.09) and a significant interaction between the 
same independent variables in how much they thought that the robot 
liked them (F[1,20]=6.68, p=0.02). While pet owners did not differ 
in their ratings of how much they liked the two robots 
(F[1,20]=0.51, p=ns) and of how much they thought that the robot 
liked them (F[1,20]=0.99, p=ns), those who did not own pets liked 
Robovie marginally more (F[1,20]=3.33, p=0.08) than Geminoid 
and thought that Robovie liked them significantly more than they 
thought Geminoid did so (F[1,20]=7.31, p=0.01).  
We also conducted multivariate analyses of our objective and 
subjective data to understand how technology use and personality 
measures correlated with task performance. We found no significant 
correlations between performance measures and technology use. 
We found a significant negative correlation between the number of 
questions participants asked to identify the robots’ picks and 
participants’ trust (r=-0.18, p<0.01) and between the time it took 
participants to identify the item and  participants’ comprehension 
(r=-0.16, p= 0.03), initiative (r=-0.17, p=0.02), and quickness (r=-
0.15, p=0.05).  

5. DISCUSSION 
The results supported our first hypothesis. Participants performed 
better in two performance measures when the robots “leaked what 

they had in mind” by means of gaze than when they did not do so, 
from which we infer that they read the leakage cue, and attributed 
mental states and intentionality to the robots, and used this 
information in their task. Our second hypothesis was also supported. 
Participants performed significantly better in the presence of the 
gaze cue when they played the game with Geminoid, but not when 
they played the game with Robovie. We also found that participants 
were more likely to report identifying the gaze cue with Geminoid 
than with Robovie and that those who reported identifying the gaze 
cue did not differ in their performance from those who reported 
identifying the gaze cue, supporting the argument that people 
automatically and unconsciously read and respond to leakage cues. 
We also found strong effects of pet ownership on all objective 
measures. Gaze cues affected only pet owners’ performance in the 
game and not others, suggesting perhaps that people who own pets 
might become—through their interaction with their pets—more 
sensitive to nonverbal behavior, as this is the main channel of 
communication between a pet and its owner. In support of this 
explanation, previous research found that dog owners learn to read 
the gaze cues of their dogs to understand their intentions [39]. 
Research on embodied virtual agents has also shown that dog 
owners differed from others in how they evaluated agents with 
zoomorphic features [44]. 
Design and Research Implications – While the work presented here 
is a first step towards understanding how robots might use 
seemingly unintentional cues to communicate intentions, it has a 
number research and design implications for human-robot 
interaction. Nonverbal leakages—and, more broadly, seemingly 
unintentional behavior—might provide the design of humanlike 
robots with opportunities to create rich, humanlike behavior. For 
instance, a shaking limb might communicate nervousness more 
expressively than explicit facial or verbal expressions. This work 
also informs research in shared attention and theory of mind in 
human-robot interaction. Our study showed that even two 400-
millisecond glances could lead to establishing shared attention, 
attribution of intentionality, and task performance effects. 
Furthermore, this work extends our understanding of how people 
interpret and respond to human communicative cues when they are 
used by robots. 
Limitations – The within-participants design of our experiment 
limited our ability to measure the effect of the gaze cue on 
subjective evaluations of the robot. While we deliberately chose this 
design to account for some of the variability in participants’ task 
performance that individual differences might cause, we 
acknowledge the importance of gaining a better understanding of 
how leakage cues might affect subjective attributions of 
intentionality, purposefulness, and states of mind. Therefore, we 
plan to run a follow-up study using the same task in a between-
participants design. 
Our results also showed that, overall, participants performed better 
with Robovie than with Geminoid both when the robots produced 
leakage cues and when they did not. One explanation of this result 
is that interacting with Geminoid was cognitively and perceptually 
more demanding than interacting with Robovie was. Data from our 
semi-structured interviews provides some support for this 
explanation. Participants consistently reported being surprised by 
how humanlike the robot looked. They also reported feeling 
nervous, lose focus, and get distracted from their task. Two 
participants reported that they could not relate to the robot because 
it looked older than them, suggesting an alternative explanation for 
why participants performed more poorly with Geminoid than with 
Robovie; they might have used polite language in talking to 
Geminoid, following Japanese conversational conventions, which 
would take more time for cognitive processing and language 
construction. This would adversely affect performance as we 



 

 

measured it in our study.A content analysis of the transcripts from 
the video data would verify this explanation. We plan to further 
analyze our data int he future. Participants also reported their 
nervousness diminished over time, suggesting that allowing 
participants to interact with Geminoid in an immersive and non-
intimidating task before they performed in the experiment might 
have alleviated some of the effects caused by the design of the 
robot. We plan to employ this approach in our future work with 
Geminoid. 
In building our hypotheses and designing the experiment, we 
assumed that there would be no significant differences in the 
accuracy of participants’ perception of the two robots’ gaze 
direction (whether participants can identify the item toward which 
the robot is looking). While we carefully designed the two robots’ 
gaze behaviors to be identical, paying particular attention to 
precision, there might be inherent differences in how the human 
communicative system responds to the gaze cues produced by the 
two robots. To validate this possibility, we conducted a follow-up 
experiment in which we compared how accurately participants 
interpreted the two robots’ gaze direction. We also added a human 
confederate in the comparison to gain a better understanding of 
whether the accuracy of people’s perception of the gaze directions 
of either robot differed significantly from that of human gaze 
direction. In a within-participants-design experiment, we asked 12 
naïve participants (5 males and 7 females with an average age of 
20.1, ranging between 18 and 22) to rate the gaze target of (1) 
Robovie, (2) Geminoid, and (3) our human confederate as they  
glanced towards a randomly selected item from among the 14 
objects  used in our experimental task. Each participant performed 
the task in 12 trials for each condition in a counterbalanced order. 
Participants rated Robovie’s, Geminoid’s, and the human 
confederate’s gaze directions with an average accuracy of 31.94% 
(SD=17.71%),  39.58% (SD=12.37%), and 37.50% (SD=15.28%) 
respectively with a baseline accuracy of 7.14% (for random 
guess). These results are also illustrated in Figure 6. We 
conducted a random-effects analysis of variance (ANOVA) and 
found that the overall model was not significant (F[2,20]=0.51, 
p=ns). Similarly, pairwise comparisons produced no significant 
differences among the accuracy ratings of the three gaze sources.  
In summary, both in the presence and absence of the gaze cue, 
overall, participants performed better with Robovie than with 
Geminoid. We argue that this effect was a product of Geminoid’s 
near-human appearance, which participants reported to be 
distracting. However, the effect of the gaze cue in improving 
participant performance was greater with Geminoid than with 
Robovie, even though fewer participants reported noticing the gaze 
cue in Geminoid than with Robovie. We argue that, though it was a 
distraction, Geminoid’s near-human appearance, in contrast with 
Robovie’s abstract design, led participants to more readily read the 

gaze cue (i.e., determine accurately the directions of gaze) and 
correctly interpret it (i.e., attribute intentionality and use this 
information to improve their performance in their task). We plan to 
further analyze our data and conduct follow-up studies to concretize 
these explanations. 

CONCLUSIONS 
Human communication involves a number of nonverbal cues that 
are produced unintentionally and communicate a wealth of 
information on the mental state and intentions of individuals. 
Leakage cues are a particular set of such cues that “leak” 
information on mental states, emotions, and intentions through the 
nonverbal channel. In this paper, we explored whether people could 
read leakage cues—particularly leakage through gaze cues—in 
humanlike robots and make attributions of intentionality—that the 
robot has intentions or beliefs about the information that is leaked. 
In a controlled laboratory study, we showed that participants 
performed better when the robots leaked information through cues 
as minimal as two 400-millisecond glances, from which we infer 
that they read these cues, interpreted these cues as related to their 
task, and used this information to improve their performance. We 
compared two robots with different levels of humanlikeness, 
Geminoid—a near-human android—and Robovie—a humanoid 
robot with abstract, stylized humanlike features—in how the 
production of leakage cues affected participants’ task performance 
in a guessing game. We found that the presence of the cues led to 
significant improvements in their task performance only with 
Geminoid, which might suggest that more humanlike faces are more 
appropriate to communicate intentions and mental states through 
leakage cues. We also found that fewer participants reported 
identifying the leakage cue with Geminoid than with Robovie, 
suggesting a more automatic and unconscious response to the cues 
produced by Geminoid than those by Robovie. Furthermore, 
whether or not they reported identifying the gaze cue did not affect 
their performance, further supporting the argument that people 
automatically and unconsciously read and respond to leakage cues. 
We found that the leakage cue affected the performance of only pet 
owners and not others, which might suggest that pet owners 
become—through their interaction with their pets—more sensitive 
to nonverbal behavior 
While this study is a first step in understanding the role that 
seemingly unintentional cues might play in human-robot 
interaction, it provides evidence that these cues can be used by 
robots to communicate mental states and intentions. Further work is 
required to extend these results into design guidelines and to better 
understand how robot characteristics such as humanlikeness shape 
people’s judgments of nonverbal cues in robots. 
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